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Abstract: Quantum dots present the chemist with the opportunity to synthesize atomic-like building blocks
with made-to-measure electronic properties. For the theorists this allows a study of the same Hamiltonian for
a range of parameters. Here we consider a lattice of quantum dots, where the dots can be prepared with a
narrow distribution of properties but are never quite identical. This is unlike an ordered lattice of atoms or
molecules. We report computations of the frequency-dependent dielectric response of a two-dimensional array
of quantum dots, as a function of the distance between the dots. When the dots are not closely packed, the
response is dominated by the Coulomb repulsion of electrons (of opposite spin) on a given dot. This gives rise
to an insulatormetal transition as the expanded array is compressed. The interplay between the three effects,
the “disorder” due to the size, shape, and environmental fluctuations of the dots, the coupling of adjacent dots,
and the Coulomb repulsion are studied as functions of the lattice spacing. The computations are performed in
the approximation where each dot carries one valence electron, but these electrons are fully correlated so as
to fully account for the Coulomb blocking. This is possible by a diagonalization of the Hamiltonian in a
many-electron basis. Comparison is made with experimental results for the dielectric response, as described in
a companion to this paper.

1. Introduction differences in the excitation energies of two neighboring sites.

. . . . This allows for facile electron transfer from one dot to another,
The ability to §ynt£1e5|ze quantum dots of different materials o iting in the formation of a band of delocalized states, as in
and of variable sizés* allows us to consider what the electronic a metal. When the coupling is weak, the excitation remains

structure of assemblies of such dots will be like. Besides the |o.ji;eq and the lattice behaves as an insulator. That disorder
fact that the properties of the components of the assembly can.,, c4use such a transition between the two regimes is known

be selected, the coupling between the dots can be tuned. Thig,, ¢iig state theory, where it is named after AndersdfHere,

can be achieved in discrete steps, by changing the ligands tha%owever the array is finite in size.

passivate the dotsmore on this point belowand also continu- . . . .

ously by a compression of a lattice of détd. However, the The coup_llng of adjacent dots is _due_ to the overlap of their

dots are never quite identical in size nor are the organicligandsv"ave functlong. Part O.f the fascmahon of monolayers of
guantum dots is that this coupling strength can be tuned by

needed to protect them packed in an identical way. The role of . e .

this local disorder can be studied in a simple approximation compressing the latticeSince the overlap is expected to depend

where each dot is mimicked as an atom with one valence exponentially on the inter-dot distance, the range of tuning is

orbital® Due to their proximity the sites are coupled. When this considerable. Here we refine our earlier work by allowing fqr

coupling is strong enough it can bridge the (possibly, small) _the Coulomb repulsmn between the_ ele_ctrons, an effect which
is also present in moleculésand which is important at large

* Corresponding author. Fax: 972-2-6513742. E-mail: rafi@fh.huji.ac.il. Separations between the dots. The valence orbital on the atom

ILTJEiveHrsli;éde biége. (?herclzjeltjr Qual!'Iid:l;lFéSi.fBelﬂll?ium-A | can be empty, or it can _accomr_nodat_e one or two electrons (of
) gaw‘éngei""m’z's‘f?rsst'ggae’:walg“’l\ﬁfsg grusall_.O:Ann?f Rg?gﬁ;. different spins; the Pauli exclusion principle keeps electrons of
Chem.199Q 41 477—96. ' ’ ' the same spin effectively apart). When there is a second electron
(2) Murray, C. B.; Kagan, C. R.; Bawendi, M. Gciencel995 270, in the valence orbital there will be a Coulombic repulsion
1335-1338. between these two electrons. This repulsion can be measured

(3) Alivisatos, A. P.Sciencel996 271, 933-937. . . .
(4) Chen, S.; Ingram, R. S.; Hostetler, M. J.; Pietron, J. J.; Murray, R. by scanning tunneling microscoy(STM). In other words, due

W.; Schaaff, T. G.; Khoury, J. T.; Alvarez, M. M.; Whetten, R.%cience

1998 280, 2098-2101. (9) Anderson, P. WConcepts in SoligBenjamin: Palo Alto, CA, 1971.

(5) Collier, C. P.; Vossmeyer, T.; Heath, J. Mnu. Re. Phys. Chem. (10) Imada, M.; Fujimori, A.; Tokura, YRev. Mod. Phys.1998 70,
1998 49, 371-404. 1039-1263.

(6) Markovich, G.; Collier, C. P.; Henrichs, S. E.; Remacle, F.; Levine, (11) Zallen, R.The Physics of Amorphous Solid#/iley: New York,
R. D.; Heath, J. RAcc. Chem. Red.999 32, 415-423. 1983.

(7) Collier, C. P.; Saykally, R. J.; Shiang, J. J.; Henrichs, S. E.; Heath, (12) Parr, R. G.Quantum Theory of Molecular Electronic Structure
J. R.Sciencel997, 277, 1978-1981. Benjamin: New York, 1963.

(8) Remacle, F.; Collier, C. P.; Heath, J. R.; Levine, Rabem. Phys. (13) Medeiros-Ribeiro, C.; Ohlberg, D. A. A.; Williams, R. S.; Heath,
Lett. 1998 291, 453-458. J. R.Phys. Re. B 1999 59, 1633-1636.

10.1021/ja9915448 CCC: $19.00 © 2000 American Chemical Society
Published on Web 04/04/2000



Electronic Response of Assemblies of Designer Atoms J. Am. Chem. Soc., Vol. 122, No. 1408800
to its finite size, a dot has a finite capacity for accommodating r . ‘ ‘ ‘ ]

extra electrons. This hinders conductivity, and if the capacitance 10 :.l.__!_ ! ! l | l | ! |
is small enough the material will act as an insulator. The D '"S"' T y\' N

importance of this (the so-called M&tmechanism, also known L1007 T g I

as “Coulomb blocking”) can be judged from the limit when o 1077 o g 1
the dots are far apart and very weakly couple¥ The lowest = - 3 ]
energy states have one electron per site. There is no first-order §

change in energy of these states because the inter-dot coupling, S .
requiring an electron transfer, has no diagonal elements. The |
change in energy due to the coupling is then given by second- B 44 .
order perturbation theory as (couplidharging energy). As
the dots are compressed, this effective coupling increases until 10° 1 12 14 16 1.8 5
it can bridge the variations in the excitation energy of adjacent ' ’ '

dots. The computations below include the effects of charging D/2R

energy. The charging energy will be smaller for larger dots and, Figyre 1. The 783 transition frequencies, determined by diagonalizing
in general, will be significantly smaller than that for atoms in  the full Hamiltonian of a hexagonal array of seven dots, plotted vs the
ordinary molecules. compression parametBy2R. D is the distance between the centers of

In the terminology of quantum chemistry, allowing explicitly the dots whose mean radiusRs These transition frequencies, from
for the repulsion between electrons re’quires refining the the ground to all 783 excited states, are one input needed for computing

. . . ] the dielectric constant. The other input is the dipole strengths of these
e'e‘?tfon'c Hamiltonian from "_i H]_kel to, for example,' a transitions, which is shown in Figure 3. Figure 1 also shows (dashed
Pariser-Parr—Pople (PPP) Hamiltoniat. The PPP Hamiltonian  cyrves) two excitation energies measured with respect to the ground
includes electron repulsion also for electrons on different sites. state of the noninteraction dotsis the charging energy, the energy
A simpler version, known as the Hubbard motféhcorporates needed to transfer an electron to an already occupied site. All states

0n|y the repu|si0n between electrons (Of opposite Spins) on theWith excitation energies aboMewill have some ionic characteﬁ. is
same site. the strength of coupling of the near neighboring dots. Whensmall,

. $6 ined B2 is the energy shift of the states that have exactly one electron per
The lineat® and nonlinear frequency responses of a hex- dot, see text. The Mott insulatemetal transition occurs when the dot

agonal planar array of organically functionalized Ag quantum got coupling can overcome the charging energy. The simple argument
dots have been measured as functions of the inter-dot separasays that this is whef = I. The detailed computations, as shown,
tion.8 Additional discussion and results are presented in the indicate that this occurs at a somewhat higher valu®R. The
preceding papéf and elsewher&l8 The experimental results ~ exponential decline of3 with D/2R, eq 2.3, has been previously
exhibit a qualitative change in the electronic response when thedetermined by comparison to the results of the measurerhehthe
lattice is compressed. We here discuss these changes a e5cond_har_mo_n_|c optical response. This gives a range paranieter 1/

. . . .5, which justifies the assumption that only near neighboring dots are
manifestations of the Mott and Anderson transitions. The directly coupled.
physical picture and detailed computations, as discussed below,
are that the Mott transition occurs for a somewhat wider lattice  The range of the interaction between adjacent dots that we
spacing, while the Anderson transition occurs upon further yse js consistent with our theoretical estimatbased on
Compression. The I|m|t|ng behaViOI’ Of a Mott inSUlatOI’ or an through_space Charge transfer. Since th|s range plays SUCh a
(Anderson) conductor are distinct because both experfra@ot  critical role, it will clearly be of interest to synthesize dots where
computationsuggest that the coupling between the dots falls the ligands will facilitate a through-bond charge transfer.
exponentially with their separation. Intermediate between the  The experimental results are given as a function of the lattice
two there can be a regime where the coupling between the dotsparameteiD/2R, whereD is the distance between the centers
is strong enough to be comparable to the charging energy yetof two adjacent dots anil is the radius of the dot. The present
not strong enough to bridge the variations in the site energies.and earlie?° results show that the Anderson transition to a
This intermediate regime is possible because of the relatively delocalized electronic phase occurs Bf2R < 1.4. The
low charging energy of the dots. In this regime, charge can “disorder” required for an Anderson transition is due to the
migrate from a dot to its near neighbors, but overall, the charge inevitable, albeit narrow, size distribution of the dots, the
is still localized. possible deviations of a dot from spherical packing, and

The conclusions of this paper depend on the magnitude angfluctuations in the organic Iigands of the dot. We _hgre report
range of the interaction between adjacent dots. We thereforethat the computed electronic response also exhibits a Mott
emphasize that this interaction is determined from fitting the ransition atD/2R > 1.3 (Figure 1).

previously measured nonlinear optical respohieand these The computation of the electronic response is fully quantum

values have not been readjusted. Also, the charging energy iSmechanlcal. The dielectric function is computed from the

taken as the value measured in the STM experirient. eigenstates of the H?‘m"t‘_’“'a”- The role of the Coulomb
repulsion is taken explicitly into account rather than by a self-
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(14) Mott, N. F.Metal—Insulator TransitionsTaylor & Francis: London, ConSi'Stent field apprOXimation- Even for a tiny array, and
1990. keeping only one electronic state per dot, the number of many-
(15) Hubbard, JProc. R. Soc1963 276 238-257. electron states of the array that need to be included in the full

38(()179)3';3"%‘(0"”“' G.; Collier, C. P.; Heath, Bhys. Re. Lett. 1998 80, basis is large (784 states for the minimal hexagonal array of

(17) Henrichs, S.; Collier, C. P.; Saykally, R. J.; Shen, Y. R.; Heath, J. Seven dots; the next completed hexagonal array has 19 sites,
R.J. Am. Chem. So@00Q 122, 4077-4083 (preceding paper in this issue).  and this corresponds to 2 821 056 160 states). The diagonal-
19£%8) Collier, C. P. Ph.D. Thesis, University of California, Berkeley, CA,  i,ation is made practical by using a matrix representation of

(19) Remacle, F.; Collier, C. P.; Markovich, G.: Heath, J. R.; Banin, U.; the Hamiltonian in a basis of spin and (anti)symmetry-adapted

Levine, R. D.J. Phys. Chem. B99§ 102, 7727-7734. many-electron zero-order states that belong to an irreducible
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representation of the unitary grol(n). These spin-adapted terms is not trivial, and we did not want a computation with
many-electron states correspond to the Gelfahsetlin basis parameters which cannot be independently determined. The
set for the irreducible representati@i?! guantum dots are arranged in a two-dimensional hexagonal
The dissipation effect that is included in all the present lattice geometry where the distance between the dotss
computations is a finite damping width of the excited electronic measured in terms of the mean diameter of the individual dots,
states. In some computations we also include a possible2R.
scrambling of the phase of the electron that is transferred The Hamiltonian for an array af sites is written as
between adjacent dots. Such a phase randomization will modify
the electronic conduction from a coherent one to a hopping
mechanism. Elsewhere we will discuss activated hopping in
more detail. For the present we note only that the thermally o near neighbors
induced hopping contribution is most likely at the lowest
frequencies. The comparison of the present computations with The first two terms in (2.1) are from the usual ¢kel
the experimental results for the low-frequeney  0) limit, Hamiltonian, wherey; is the ionization potential (IP) of the dot
while acceptable, is therefore not necessarily physically mean-and the couplingpjj, is the transfer integral, which is nonzero
ingful. The results for this regime are accordingly not shown, between near neighbors onl; is the operator which deter-
but they are available from the authors upon request. mines the charge on the sitevhile E; moves an electron from
Computing the response function requires not only the eigen sitej to sitei.
energies of the system but also the dipole matrix elements. To The dots are prepared by wet chemical methods, and the size
do so we donot make the commonz electron theory distributions that are currently achieved are narrow enough for
approximation that the states of adjacent sites are orthogonalthem to assemble into a lattice. However, the individual dots
Rather, we do allow for overlap, and this makes the transition are not identical, and the;'s fluctuate within a rangex, +
dipole matrix elements a sensitive function of the distance (Ao/2) = ao(l £ (d60/2)) due to variation in the sizes,
between the sites. It is this dependence of the dipole matrix irregularity with respect to the spherical shape, and variations
element on the lattice parameter that makes the response functiofn the ligand coverage:® Specifically, we shall represent the
such a sensitive probe of the nature of the wave function. site energies as
This paper begins with a discussion of the Hamiltonian
(section 2). At the suggestion of the editor and the referees, the o = a(1 + 0ay) = o[l + dofran — 0.5)]  (2.2)
discussion puts special emphasis on the more chemical context. .
The technical aspects of generating the basis used to obtain théVhere ranis a random number between 0 and 1 and the
Hamiltonian matrix are given elsewhe¥eSection 3 presents ~ S@mPpling is such that the mean value of the energyois.e.,
the formalism for computing the dielectric constant and the 2i=Adi = aodayi(ran — 0.5)= 0. We emphasize that the

n . n R 1 n . .
H=") aE; + Z BiE; +£ LEi(Ei —1) (2.1)
= = i=

complex modulus. The results are presented in section 4. fluctuations in the site energies are chosen so as to average out
to zero. The value ofiy sets the zero of energy and so is not
2. A Hamiltonian for Designer Atoms really needed, but the rang&ea; = agda, of the fluctuation in

the site energies is a critical parameter. It is determined by the
width of the size distribution that, in the companion pajies,
quite narrow, and we usin = 5%. Larger values are easier to
achieve, and we emphasize that, for an expanded lattice, wider
luctuations in the site energies, if comparable to the Coulomb
epulsion energy, can lead to a qualitatively different behav-
ior.2* Since Aa; = apda, this regime can also be reached by
changing the value aky, i.e., by changing the composition of
Sthe dots.

The transfer integrg® depends on the distanB¥2R between
the dots, and we use the following functional form:

In the simplest approximation one can regard each quantum
dot as an atom carrying one valence electron and otherwise
neglect the internal structure of the dots. [Note: Quantum dots
have quite low-lying single electron excited states. For smaller
dots, these are higher than the mean thermal energy. If nee
be, these can be taken into account using the extendeleHu
Hamiltonian23® which allows more than one orbital per site.]
This serves to center attention on those properties of the dot
that are readily amenable to experimental control. Specifically,
these properties will appear directly as parameters of the
Hamiltonian. This approach is similar to the neglect of the
electronic core of atoms im electron theorie$? The electronic B = (By/2)(1+ tanh[D, — D)/4LR]) (2.3)
Hamiltonian is then a Hekel (tight binding)-Hubbard Hamil-
tonian where each site carries one orbital. The Hubbard which decays exponentially gk exp(—D/2RL) at large inter-
modification is the explicit inclusion of electronic correlation dot separation. Figure 2 shows a plot of (2.3) with the
as a term that takes into account the repulsion of electrons of parameter determined from a fit of the measured second
opposite spin when they are on the same site. As we discussharmonic optical responseThe decline is steep because
below, the role of the charging energy will be taken fully into 1/ = 5.5. This implies a relatively swift change from weak to
account and not treated as an approximation (such as via a meastrong coupling when we var/2R, and this will be a key
field in which each electron moves). The PPP HamiltoHan  feature of our results. We therefore point out that this choice of
takes into account also the electron repulsion for electrons on1/L is further discussed in refs 8 and 19. For future reference
different sites. It can be used without an increase in our we note that we take the point of inflecti@y/2R to equal 1.2
computational effort. We chose not to do so because unlike for so that the inter-dot coupling falls to half its maximal value at

the charging energy itself, estimating the additional repulsion (D/2R) = 1.2. It is this which will be shown to determine the

(20) Paldus, JJ. Chem. Phys1974 61, 5321-5330. boundary between the strong coupling (Anderson) regime and
(21) Paldus, J. Itunitary Group Approach to Many-Electron Correlation ~ the weak coupling (Mott) regime. Figure 2 shows the range of
Problem Paldus, J., Ed.; Springer: Berlin, 1981; Vol. 22, ppSD. fluctuations in the site energies (dashed area) so as to emphasize

(22) Remacle, F.; Levine, R. . Chem. Physl999 110, 5089-5099.
(23) Hoffmann, R.Solids and Surfaces: A Chemist’'s View of Bonding (24) Remacle, F.; Levine, R. DProc Natl. Acad. Sci. U.8. 200Q 97,
in Extended Structured/CH: New York, 1988. 553-558.
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T | = &/C(R) (2.5)
10°

"""""""""""""""""" I - C(R) is the size-dependent finite capacitance of an individual

N dot, C(R) = 4meeeR, whereR is the radius of the dot is the
-1 \ ’ e, 0
10 \\j \\\\\ permittivity of a vacuum, and is the dielectric constant of the
‘N material surrounding the particle. The experiments referred to
-2

NMott - lik
N Q below?16 were made for dots oR = 35 A. Note that eq 2.5

10 Anderson - like
\ determines also the local variationslidue to the variations in
107 \ the size of the dots.
\ The Hamiltonian is diagonalized using its matrix representa-
1 1.2 1.4

B\\ tion in a basis of spin and symmetry-adapted many-electron
2

energy / B,

zero-order states that belong to an irreducible representation of
the groupU(n).2! The details of the computations are given
D/2R elsewheré? Here we note that for an array, where a site has
Figure 2. The three energies that determine the electronic structure MOre than two near neighbors, implementing the commutation
of the array, plotted vs the lattice compressif2R. See also Figure  relations (2.4) in matrix form is carried out in a stepwise manner,
1.1 is the charging energy. For the narrow size distribution of the dots Starting from the generators for raising or lowering the site index
used in the experimeHithat we discuss herejs larger than the range, by unity. The numbers of doublet states axke = 784,
Aa, of possible fluctuations in the energies of the dots. The actual 2.821056160x 10°, and 5.934116446 10'° for n = 7, 19,
energies, eq 2.2, fall within the shaded range. Two (not mutually and 37, respectively. (The numbaer of sites is that of smallest
exclusi_ve) coupling regimes are indicated: In the Mott regime, Fhe main hexagonal arrays.) The results we show below are for the seven-
effect is the role of thg charging energy that tends_ to localize each site array. The high degeneracy implied by the large number of
electron on a dot (cf. Figure 1). In the Anderson regime, the-dot electronic states means that care must be exercised in diago-
c_oupllng is strong enough to overcome bb#nd the variations in the nalizing the Hamiltonian matrix. [The accuracy of numerical
site energies. diagonalization methods is typically less for the eigenvectors
than for the eigenvalues, and moreover, the eigenvectors of a
subset of degenerate eigenvalues are defined up to a rotation
that can be machine dependent. We got satisfactory results using
the subroutine DSYEVD of the LAPACK librar§f which also
. . . gives degenerate eigenvectors for which the rotation factor is
The fluctu_at|_ons_ in the _detdot couplingps are gover_ne_d b}’ not machine dependent. The accuracy of the results, and
both the variation in the siz&, of the dots and the variationin - geifically the computation of the polarizability (which depends
the local packing distancB. This is unlike the case with the . atrix elements, see section 3), has been checked by
site energies, which vary only due to size variations. Hence, in .ompyting on different machines.] This is particularly so at low
general ;5 will fluctuate more tharu. compressions of the lattice where the coupling of the dots is
The magnitude and range of the transfer integralan be weak.
experimentally tuned in a number of ways, and this has notyet 3 1. The Zero-Order Description in the Weak Coupling

been fully explored. In particular, it may prove possible to alter Regime.The Hamiltonian for which the dots are uncoupled is
the transfer integrgf while keeping the composition of the dot,  quite simple:

by changing the ligands. These can be involved as an active

1.6 1.8

that, at high compressions, the inter-dot coupling can exceed
the variations in the site energig is our unit of energy, and

we scale all energies by it. Comparing with a physical system
does, of course, require an explicit value.

bridge for electron transfer. Increasing the range of the-dot n | N
dot coupling can markedly facilitate the onset of metallic Ho' =, S E +-SEi(E — 1) (2.6)
behavior. = 2

The last term in (2.1) is the Hubbard term. The two electron
repulsion (Hubbard) terms in the Hamiltonian are often handled Without the Coulomb repulsion, all the doublet states of an
by a self-consistent field procedure. Instead, we will carry out n-site,n-electron ( odd) model are degenerate with an energy
a complete configuration interaction by using the unitary group noo. The Coulomb repulsion term counts the number of doubly
formalism?%2.25This is possible, since the Hamiltonian (2.1) excited site orbitals. Fom = 7, the possible electronic
is expressed in terms of the generatéﬁﬁ,of the unitary group configurations have zero, one, two, or three doubly occupied
U(n), wheren is the number of sites. These operators are spin Site orbitals with energiesads, 7ao + I, 700 + 21, and @ +

independent and obey the commutation rules 3I, respectively. For an array of seven non-interacting dots, the
Coulomb repulsion therefore leads to a splitting of the degener-

E.l=E 01— ékjéi Lobpkl=1,..n (2.4) ate ground state into four bands of degenerate states. The ground
' o n state corresponds to electronic configurations with one electron
per site and is unaffected by the Hubbard term. It is 14 times

Th? diagonal _generatoéq—,i are called the_ weight generators, degenerate, and its energy iso/ (There are 210 degenerate
while the off-diagonal _genera;ot‘s,j are s_hn‘t generators. Note states at @, + |, 420 states atd, + 2, and 140 states at
that the Hubbard term in (2.1) involves diagonal generators only. Zao + 31)

Note that the Hubbard tern} &(E,; — 1)) simply counts the When the fluctuations of the site energies (but not the

number of doubly occupied sites. . ; - .
) . i charging energies) are taken into account, the energies of the
The computations require the value of the charging energy ;. states become

I. The charging energy can be estimated as

[E

ij?

(26) Anderson, E.; Bai, Z.; Bischof, C.; Demmel, J.; Dongarra, J.; Croz,
(25) Hinze, J. InThe Unitary Group for the Ealuation of Electronic J. D.; Greenbaum, A.; Hammarling, S.; McKenney, A.; Ostrouchov, S.;
Energy Matrix ElementsHinze, J., Ed.; Springer: Berlin, 1981; Vol. 22. Sorensen, DLAPACK Users' GuideRelease 2.0; SIAM: 1994.
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n [ correspond toi andj being indices of adjacent sites. The
Ho' = Z(}Lini +-n(n, — 1) (2.7) eigenstates of the adjacency matrix determine the MOs which
1= 2 are fully delocalized and do not vary as the spacing is changing.
The n eigenvalues of the Hamiltonian matrix (2.9) are the

wherekr]n is the mImeer of elec_trons (|jn the_ sneThf? gro(;msl A energies of the MOs and are givenBickel = tio + fm Where
state has one electron per site and so Is unaftected by they, ;s gne of then eigenvalues of the adjacency matrix. Note

fluctuations in the site energies, beause they are sampleq SO 8§t for D/2R) > 1, mis independent of the compression so
to average out to zero._Therefore,_ the ground state remains 1444t the eigenvalues depend dW2R) only through3, cf. eq
times _degenerate, and its energyis. On the other hand, th_e 2.3. For an odd number of sites, the highest occupied MO in
energies of the three other bands are split by. the ﬂuctuauons,the ground state is degenerate. (It is doubly degenerate for our
and states from different bands can overlahd > . Note seven-site system, but the degeneracy can be higher for larger

b ne_|ther_ the ch_arglng e_ner_gynor the rangeAa. of the . arrays.) This degeneracy is split by the fluctuations in the site
fluctuations in the site energies is expected to vary strongly with oo rgiecn g This splitting leads to a small transition frequency

the compression, particularly so in the regime of large inter- whose magnitude is therefore governed/y

dot separation. . . . 2.3. The Intermediate Region: Coupled but Not Delocal-

. The nee_lr-nelghbor coupling degreases exponentially with the ized. Intermediate between the low-compression and high-
!nter-dotdlstance, cf. eq 2.3 and Figure 2, and atlarge Selo"J‘rat'oncompression regimes, there is a transition region where the
IS muph §mallerthahor the qugtuanonsAa. When the trgnsfer distribution of frequency transitions is more uniform because

coupling is included, the energies of the four bands of e|genstatesﬁ I, andAa are of the same order of magnitude so that there
of the HamiltoniarHo' (including the band of the ground state) is, n’o good zero-order Hamiltonian. In this region, there is no
are split. The ground-state band is unaffected by the fluctuations B . : ' ;

in the site energies. Whelr= 0, there is a ground state band, transition frequency that is more than an order of magnitude

and its splitting by the inter-dot coupling leads to the very small smaller than the next one. Outside of it there is a distinct lowest

transition frequencies between the now nondegenerate rounc{r”equency transition, cf. Figure 1. But the origin and the
q . . g 9 agnitude of the smallest transition frequency are quite different
state and very low-lying excited states. These very low

frequencies, which decrease exponentially with increasing in the onv anq in the high Ievels.of compression of the Iattjce.

separation a,lnd are of the orderffl ~ 10-7, for DI2R = 2 On the r|ght_S|de of the |nterm_ed|ate reglon_(low compressmn),

are seen in Figure 1. Note that they connect the ground s,tate toth(_a electronic states are localized on the sites. On the left _S|de

delocalized excited .states The limit bf— 0 is discussed in (high compre.ssmn), the mgny-electron states are delocalized
) over all the sites of the lattice.

section 2.2.

To conclude, at larger yalues Bi2R (whenD > Dy, cf. eq 3. The Dielectric Response
2.3), the Coulomb repulsion ensures that there can be a small
(14 states fon = 7) band of lowest energy states. These are  This section provides the technical details for computing the
the states where each electron occupies a different site. Whercontribution of the electronic states of the array to the dielectric
| exceeds the rangé\a, of fluctuations in the site energies, function. The computation uses the exact expression as given
this band is separated from other (770 fio=7) states because by quantum mechanical linear response theory because the off-
only it has no Coulomb repulsion effects. This is the Mott resonance terms give rise to a background contribution that is
regime. The inter-dot coupling splits this band and gives rise not negligible. The computations are quantum mechanical and
to very low-frequency transitions out of the ground state. If do not include any thermally activated hopping contribution,

I = 0, there should still be 14 states whose energyoig But which means that the very low-frequency limit need not agree
they will lie in the middle of the band of 784 states, cf. Figure with experiment. In terms of simple models, one can say that
1. It is the large Coulomb repulsion that sets the band of 14 what we compute is a resonant and not a Debyedlike

states apart. On the other hand, when the ramye, of expression. The simplest representation of a resonant contribu-
fluctuations in the site energies exceédhe ground-state band  tion is the VanVleck-Weisskop# Frohlich?® functional form.
of states will be mixed with the other (770 for=7) states, However, here we use the quantum mechanical form of the
where there can be sites which are doubly occupied. polarizability and not a one-term approximation to it.

2.2. The Strong Coupling High-Compression Limit.We The starting form is the expression for the frequency-

turn next to the opposite limit, that of high compression, where dependent electronic polarizability of a system. For ixe
the dominant effect is the inter-dot couplin®,which is larger component,

than eitherAa or . A suitable zero-order (= 0 andAa = 0)
Hamiltonian is

& N
, no n o (@) = gn;g I@IXImDJZ X
Hy" = aOZEii + ﬁZEij (2.8) 1
i= ]

Opg— =0 o+l —o

(3.1)

This is the Hekel limit, and sincd = 0, the one-electron level
of description is valid. One can generate the many-electron Stateswith obvious modifications for the other componergsis the
from the one-electron molecular orbitals (MOs) which are

obtained by diagonalizing thex n Hickel Hamiltonian matrix, grouEd state. Thel electronic states are enumerate_d roy
Wmg = wm — wg > 0. Three factors govern the magnitude of

Hjickel = ol + M (2.9) (28) Franlich, H. Theory of Dielectric: Dielectric Constant and Dielectric
Loss Clarendon Press: Oxford, 1950.
M is the adjacency matrdX whose nonzero entrielylij =1 (29) Kubo, R.; Toda, MNon Equlibrium Statistical MechanicSpringer-
Verlag: Berlin, 1985.
(27) Platt, J. R. IrFree Electron Theory of Conjugated MolecylB4att, (30) VanVleck, J. H.; Weisskopf, V. Rev. Mod. Phys1945 17, 227—

J. R., Ed.; Wiley: New York, 1964. 236.
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Figure 3. Dipole transition amplitud@mg = [g|x|mCin the x direction,

from the ground state to each excited statfen=1, 2, ..., 783. Shown
for three values of the lattice compressi@i2R, as indicated. Had we
plotted the transition strengthimg?, itself, the small transitions would

be hardly evident. There are two noteworthy aspects. One is the role

of delocalization. A localized wave function on a hexagonal array
without a packing disorder will have no dipole strength in the
direction. As the lattice is compressed, the -édot coupling, §,

J. Am. Chem. Soc., Vol. 122, No. 1408900

overall magnitude clearly decreases as the lattice is expanded.
This is why optical spectroscopy provides a good probe of the
delocalization of the wave function. For an ordered hexagonal
lattice there will be no dipole strength for a transition polarized
in plane. Also, note how it is mostly the lower excited states
that are optically accessible.

One can combine the two terms in (3.1),

2 N

¢ 20, X M
axx(w) =

2 2 2 _ o
h =y Ot Iy — 0 = 2wl

(3.2)

so as to show the shift of the resonance frequency due to the
damping. This quantum mechanical form, eq 3.2, of the
polarizability agrees with the classical expression for the
dielectric constant for the case fdamped harmonic oscillators
representing, in the manner of Heisenberg, the transition modes
of the electrong83!

Taking the real part and the imaginary parts of the polariz-
ability shows the role of the damping:

. & _2ABXIMT(wpg+ ) — o]
d:(lxx(w)] - Emig[(a)rzng'F F,zn) _ (,()2]2 + 4w2F2m

@ QXM @,
|m[axx(w)] - gn#g[(a)ﬁ,]g + Fﬁ) N (1)2]2 + 4(1)21-%1

(3.3)

At w = 0, the contribution of the background to the electronic
polarizability is real and positive:

& _ 2w, J@xmJ’
0,,(0) = gZﬁ >0 (3.4)
=g g+ I
As w — 0, ax(w) — 0 (both real and imaginary parts).
Whenw goes through a resonand®g ax(w)] changes sign

increases and the wave function is increasingly delocalized. The otherand goes from positive to negative whilen[ox(w)] goes
point is the breaking of symmetry. For an ordered hexagonal array, through a maximumIfn[ax(w)] is positive forw > 0). The

where all dots are identical, there will be no allowed transitions in the
x direction. When we allow disorder but put= 0, there are only 24

position of the resonance is governed bf, + I'; and so
depends also on how the damping scales with the compression.

allowed transitions. These are the 24 ways in which a single electron .
can be excited from an occupied to an unoccupied molecular orbital in Y& have used the functional form
a hexagonal array of seven sites. These are lower energy transitions.
There are 783 excited states in all, and when0, these are no longer
pure Hickel states, so all transitions are allowed but many have very

I, = Coy {1+ ByB) (3.5)

small strength.

the polarizability: the magnitude of the transition dipole, the
transition frequency, and the damping widih,.

It is important to emphasize that only those excited
states with allowed transitions from the ground state (i.e.,
|[gx|m? = 0) contribute to the sum (3.1). The dipole matrix

wheref, an exponentially decreasing function@®2R, is given

in (2.3) andC is an overall scale factor (Figure 2). This
dependence is due to the competition between the damping on
site and the transfer from one site to the next. The faster the
transfer [/f3), the lower the damping rate. The result is that the
damping has a part which decreasesDd2R increases. The
damping rate is an increasing function of the transition frequency

elements were computed as in ref 19. Of the 783 excited stateswmg (higher excited states are more subject to damping).
for a seven-site hexagonal array, there are only 24 allowed The frequency-dependent dielectric constant is given by

transitions at the Hzkel level, but all transitions contribute when

I = 0. Even so, the higher excited states tend to have the lower

values of the transition dipoles because of theifckel
parentage: in the limit where = 0, the high excited states

have more than one electron occupying a higher molecular
orbital. Such two (or more)-electron transitions are not allowed

by a dipole transition. Whehis finite, these states borrow some
transition strength from the low excited states. The distribution
of dipole strengths is shown in Figure 3. Note first that the

e(w) =1+ (Nleg)a,(w)
M(w) = Lle*(w)

(3.6)

where here N is the number of dots per unit volume anis
the vacuum permittivity, so thalN(ep)ox(w) is dimensionless.
The complex dielectric modulus is defined lly= 1/e* so that

(31) vonHippel, A. RDielectric and Waes Wiley: New York, 1954.
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Figure 4. Real and imaginary parts of the dielectric constant, plotted
vs the frequency for several values of the lattice compres§M2ZR,

as indicated. The energy axis is in unitsfef eq 2.3, which determines
the magnitude of the detdot coupling. The resonance we compute
does shift as the lattice compressi@/2R, changes. The transition
from an insulating to a metallic behavior occurs, as in the experithent
at D/2R >1.3. This transition is very evident in a Cel€ole plot
(Figure 6). It is also worth noting that if we use the value, 0.5 eV, of
Bothat is obtained by a fit to the second harmonic response experiment,
then the resonance seen in the imaginary part occurs at the point whic
the present experimértsuggests is the energy of the collective
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Figure 5. Real and imaginary parts of the dielectric moduliy,
plotted vs the frequency for several values of the lattice compression,
D/2R, as indicated. The energy axis is in unitsfef eq 2.3. Note that

the energy axis extends to a higher range than in Figure 4. This is to
show that the variation d#l is more sensitive to the role of the charging
energy while a plot of the dielectric constant is more sensitive indicator
of the role of the dotdot coupling.

h(dimensionless), due to size fluctuations. We also include a 5%

fluctuation in packing.

resonance. To be sure that this is not an accident, it would be good to  The behavior of the dielectric constaafw) at very low

have a measurement of a third property. If confirmed, we will have at
hand both the range and the magnitude of the-dot coupling.

€(w) _ explig(w)]

= / * = =
M = lle*(w) |6(CU)|2 le(w) a7
Im[e()] '
tanfp(w)] = Ree(®)]

Im[e(w)] is the dissipative part of the dielectric constant and
is positive throughout the frequency randede(w)] is the
dispersive part. Through a resonan&&e(w)] will become
negative if NEgRdox(w)] (eq 3.3) is smaller thar-1. This
will occur at high compression where the magnitudeas
large. Our results are that plotting in a Cole-Cole plot (the

(microwave range) frequencies and a comparison with these
experimental resuléd®is discussed in detail in notes available
from us. We do not show these results here because, at the
moment, it is not clear to us to what extent the low-frequency
transport measurements are due to thermally activated charge
migration.

The dielectric constant(w) has been measured at much
higher frequencies via the optical transmittance and reflectance
of the monolayeP:5171n this regione(w) exhibits a resonance
behavior. Our computations also show a strong resonance in
this frequency range. In Figure 4, the real (panel a) and
imaginary (panel b) parts of(w) are plotted as functions of
the frequencyw for several values oD/2R: from a high
compression value to a lower compression. At low compression

real vs imaginary part as the frequency is varying) emphasizes(P/2R > 1.4), Rde(w)] is positive and very small because we

the smallD/2R side of the metal insulator transition, while a
Cole—Cole plot ofe itself is more sensitive to the largB/2R
range. SoM is more sensitive to the role of the charging energy
I, while the plot of the dielectric constaais more sensitive to
the effect of the inter-dot coupling Operationally, this means
thate is more sensitive to the lower frequency range, while the
plot of the dielectric modulu$/ is more sensitive to higher
frequencies.

4. Results

compute only the contribution of the array to the dielectric
response. On the other hand, for higher compressiReis()]

has clearly a dispersive character, and the resonance occurs at
higher frequencies d3/2R decreases. This behavior is similar

to that observed experimentally. The imaginary park@b)
(panel b) is always positive and less sensitive to compression
than the real part. This too is as observed. The resonance seen
in panel b may be the resonance suggested in the experimental
companion papéf to be in the near-IR. This interpretation is
consistent with the value, 0.5 eV, @f that we obtainetiby

The computations were carried out for a charging energy, fitting the measured nonlinear optical response as a function of

I = 0.6 Bo, and site energiesy 10 Bo, oo 0.05

lattice compression.
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Figure 6. Cole—Cole plot of the imaginary vs the real part of the
dielectric constant as the frequency is varied. Increasing the frequency
makes the plot change in an anticlockwise fashion. The key point to
compare with experiment is that for an insulating array, the dielectric
constant plot is confined to the positive quadrant. It is also much smaller,
cf. Figure 8 of ref 17.

Figure 7. The number of quantum states which are below a given
energy plotted as a function of the energy. At low compressions there
is a band of very low lying states followed by a gap, as can also be
seen in Figure 1. At higher compression the number of states remains
unity (viz., the ground state) until a higher energy, at which point it
rises in a nearly continuous fashion. The first step at higher compression
is due to the isolated low-lying excited state (cf. Figure 1). The next

Figure 5 compares the frequency dependence(«j with few steps are due to states that are hardly resolved on the scale of
that ofM(w). Note that the frequency scales in Figures 4 and 5 Figure 1.

are different. This is becausé(w) is more sensitive to the high-
frequency range of the spectrum. This is the range where the
role of | is more important because it induces the intensity
borrowing that is needed. In contrasfw) is more sensitive to
the lower frequency range, where it is the delocalization of the
wave function that is most important.

Figure 6 shows a CoteCole plot of the dielectric constant
for several lattice spacings. At high compression, when the dot
dot coupling is large and the wave function is delocalized, the

plot is a counterclockwise circle centered so that fairly large ; - .
negative values dRee(w)] are possible. In the insulating phase, many-electron_bass, for dlf_ferent valu_es of the distance between
¢(w) stays in the positive quadrant. It is also much smaller the dots. Particular attention was given to the role of small

because the dipole strength is greatly reduced (see Figure 3)_\/ariations in the size_, shape, and enviro_nment of the dots and
Finally, Figure 7 shows the number of states (i.e., the to the Coulomb blocking due to the charging energy of the dots.

cumulative density of states which is how many states there YWhen the dots are far apart, the electronic response is dominated
are up to a given energy) vs energy at three levels of by the Qoulomblc repqlsmn of electrons on a given dot. This
compressionD/2R = 1.2, 1.5, and 1.8. While the density of 9iVes rise to a Mott-like |nsulatefmetallt.ran.5|t|on as the
states is almost continuous fBr2R < 1.4. at lower levels of extended array is compressed. The transition is sensitive to the
compression it exhibits a wide gap that corresponds to the SiZ€ of th(_e dots._Upon further compression, the electronic
charging energy, in agreement with the experimental resdits.  'eSPonse is dominated by the coupling between the dots.
The origin of the gap at wider spacings is, as discussed in Figure COmparison was made with experimental results for the
1, namely the splitting off of the ground-state covalent band dielectric response (preceding paper), and the qualitative agree-
due to the exponentially small coupling to the ionic states. Itis MeNt Is encouraging.

the closing of this gap upon compression that marks the onset ] ) .
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The electronic contribution to the dielectric response as a
function of frequency can be computed from the quantum
mechanical electronic polarizability of the lattice. The polariz-
ability is the sum of the oscillator strengths, each weighted by
a resonance denominator. There are many possible final stateSA9915448



